Estimation for slip ratio and adaptive control of Tracked mobile robot
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Abstract— when it comes to controlling a tracked mobile
robot, the longitudinal slippage of the left and right tracks
can be described by two unknown parameters. In this project,
we intend to use different adaptive laws and neural network
methods to estimate these slippage parameters. To compare
the performance of the different estimation methods, we use
Simulink and python to construct simulation models. An
empirical formula of slippage was used to simulate slippage.
The final results are analyzed by the the RMS value of the
trajectory tracking error.

I. INTRODUCTION

Recently, different applications of tracked mobile robots
(TMR) are emerging more and more often in the fields of
agriculture, national defense, and industry. As shown in Fig.
1, large contact areas between tracks and the ground provides
better mobility in unconstructed environments. Subsequently,
the problem of motion control of mobile robots becomes a
popular topic among researchers. Lots of researchers have
designed various tracking controllers [4] [9] [12] with the
nonholonomic constraints, which is the assumption that the
mobile robot are subject to a "pure-rolling without slip-
ping" situation. However, the disadvantage of the tracks
is that it increases the chance of slippage to happen in
a rough terrain. Therefore, it is necessary to consider the
slipping condition for mobile robots operating in complex
environments. In [13], the slippage for mobile robot was
categorized into lateral and longitudinal slippage. The tra-
jectory tracking problem considering slippage was proposed
in [2] and [10]. However, these studies all assume that
the slippage parameters can be directly detected by the
sensors in real time, which can still hardly be achieved by
modern practical engineering. Hence, to compensate for the
slippage, the slippage parameters must be estimated. There
are many existing researches trying to solve this problem
using different approaches. The first popular approach is
using adaptive law to estimate the slipping parameters [1]
[7]. On the other hand, neural network are often well suited
to model uncertain or nonlinear function such as mobile
robot dynamics [5]. Assumed that the slippage ratio can
be described by a complicated nonlinear function g(x). This
time, we try to approximate the g(x) with NN.

II. PROBLEM FORMULATION
Slippage ratio is defined as Eq.1
i = Ly TWRT VR (1)
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Where wy, and wr, are the angular velocities of the left and
right wheel, r is the radius of the wheels, and v] and v% are
the actual linear velocities of the wheel with slippage. Since

wr, and wpr can be measured by the encoder or any other
angular velocity sensors, if we can obtain the information
of v§ and v%, then the slippage ratio can be directly
calculated. However, there are several difficulties that impede
us from doing so. First, the nonlinear nature of the slippage
parameters makes it difficult to measure the actual linear
velocities of the wheel. Even if there are sensors like GPS
that can obtain the information with relatively high precision,
the cost of these sensors is usually unaffordable. However,
using low-cost sensors to measure the linear velocities can
result in magnificent noise in the signal. In addition, the low-
cost sensors usually provide low sampling rate and delay,
which is also a big problem when controlling the robot.
Therefore, using limited information to design an adaptive
law which can indirectly estimate the slippage ratio becomes
a crucial topic regarding the precise control of mobile robots.

In this project, we will use different approaches to esti-
mate the slippage ratio and compare the trajectory tracking
performance.

IIT. APPROACHES

The kinematics of the mobile robot is defined as:
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where ¢ = [z, , 0]" is the Cartesian coordinate of the mobile
robot, and ¢ = [4,9,w]” is the time derivative of the position
of the robot. Also, r is the radius of the wheel, b is the
distance between two driving wheels of the TMR. wr,wg
are the angular velocities of the left and right driving wheels,
which is controllable.



To achieve trajectory tracking, we define the tracking error
e = [e1,ea,e3]T in the global Cartesian coordinate as:
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By applying backstepping control method, the auxiliary
control law can be design as [3]:
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Therefore, the actual control input will be:
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To calculate for the control input, we need the information
of the slippage parameters iy, i

A. Adaptive update law 1

For the first adaptive law, we adopted the method proposed
in [1]. The adaptive law designed in this research doesn’t
estimate the slippage parameters directly. Instead, the pa-
rameters were redefined as following:

1
71—’L‘k

a k=LR 2)

The estimations of aj are defined as ap. On the other
hand, the estimation error is defined as ap = ar — a.

The Lyapunov function was chosen to be as following:

1 1 —coses ay, aRr
V(t) = =(e? + e2
®) 2(61 te)+ ko 2prar,  2p2aR

where ks, p1, p2 are positive constants.

Therefore, the adaptive law for a, and ar can be designed
as Eq. 4 and Eq. 5 to make V' (¢) < 0:
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B. Adaptive update law 2

For the second adaptive law, the method proposed in [7]
was adopted. Similarly, the adaptive law designed in this
research estimates the parameters defined as Eq. 2

The difference is that the Lyapunov function was chosen
to be as following:
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where ks, p1,p2 are positive constants, and Vy(e) is the
Lyapunov function of the mobile robot tracking controller

[8].

Therefore, the adaptive law for az, and ar can be designed
as Eq. 7 and Eq. 8 to make V(¢) < 0:
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C. Neural Network

We have introduced the application of neural network. In
this paper, we try to approximate the nonlinear function g(x)
and input is defined as
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The neural network can be redefined as g(6) : R® — R?
9(8) = W' o(0) ©)

where ® is activation function, W are weights in neural
network and g is regarded as the output predicted slippage
ratio [iz, (i) igr(i)]* . Next we choose MLP with 6 inputs, 1
hidden layer with 10 neuron and 2 outputs, all of the layers
takes the sigmoid activation function as our NN structure.
Introduce the SGD as the optimizer and adopt MSE as loss
function. In order to get a better performance, we train this
network in the following trajectory:

x =0.01t
y = (0.01t)*
training with epochs = 200, datasets = 200 and batches =
32. Fig. 2 shows the training result.
Next, we will apply this pretrained model to a different
trajectory and validate it if it can accurately predict the slip-
page ratio. Moreover, we also introduce the online learning

[6] to compare the tracking performance and slippage ratio
estimation with the method of offline pretrained model.

(0 < t < 200)

IV. SIMULATION AND DISCUSSION

After the methods have been determined, we use sim-
ulation to compare the performance for each method. To
model the behavior of the vehicle, some parameters must
be assumed in the simulation. The parameters of the TMR
are set as follows: b = 0.15m, r = 0.075m, ( = 1,
ko =14,k = ks = 1.

In addition, since slippage is a nonlinear behavior, using
a constant to analyze the estimation performance cannot
guarantee an equivalent result when implementing on the
robot. Therefore, we adopted an empirical formula proposed
by [11] to simulate the slippage. According to the research,
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Fig. 3: The block diagram of the trajectory tracking scheme

the slippage parameters are exponential functions of the
turning radius, which can be written as follows:

if = 0.07e 0688
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The coefficients in the formula are obtained from the average
of multiple experiments. R is the radius of path and can be

calculated by

L(wgr +wr,) for
(wr —wr)

Also, to verify the effect of the estimation schemes, we
increase the values of the slippage parameters by 1.3 times
as much as the previous values at t = 30 sec.

The block diagram of the entire trajectory tracking scheme
is shown in Fig3.

The equation of the reference trajectory is given as:

x = 1.6sin (0.01¢)
y = —1.6cos (0.01¢)

R = wy > Wy

(0<t<381)

where ¢ > 0 is the simulation time. The initial posture of the
reference trajectory is set at:

qr(0) = [zr(0),yr(0),0r(0)]" =1[0,0,0]"

However, to demonstrate the tracking ability, the actual
initial posture of the TMR is set at:

A. Adaptive laws

The initial conditions are chosen as ar,(0) = ar(0) = 1.
Also, the estimation gains are set to be p; = ps =5, 71 =
~v2 = 50. The results of the first adaptive law can be seen in
Fig. 4
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Fig. 4: The estimation results of the first adaptive law

We can see that the estimation errors of the parameters
quickly reduce to about 0.04 within 10 secs. However,
with the change of the angular velocity of the two wheels,
the slippage ratios also change. The convergence of the
estimation couldn’t keep up with the sudden change of the
parameters, resulting in a rising of the estimation errors.
Moreover, when the slippage ratio suddenly magnifies at
t = 30, the estimation errors rise again. The final estimation
error when ¢ = 81 is i, = 0.1253, ip = 0.0669

For the second adaptive law we adopted, the results are in
Fig.5

(a) The estimation errors (b) slippage estimations

Fig. 5: The estimation results of the second adaptive law

From the results, we can see the convergence happens
faster than the first adaptive law. The estimation errors
reduced to < 0.001 within 8 secs. However, when the
parameters increase at ¢ = 30, the changes in the estimations
are inapparent. Nonetheless, the estimation performance is
still better than the first adaptive law. The final estimation
error when ¢ = 81 is i;, = 0.02398, ip = 0.01026

Fig. 6 demonstrates the trajectory tracking results of the
TMR using the two different adaptive laws. To distinguish
the effect after compensating for the slippage, the tracking
result without using the adaptive controller was also in the
figure.
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Fig. 6: The trajectory tracking result with the two adaptive
laws
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Fig. 7: The tracking errors with the two adaptive laws

From the tracking result, it is clear that with the imple-
mentation of adaptive controller, the negative effect of the
slippage can be canceled, which greatly benefits the tracking
performance. On the other hand, the difference between the
two trajectories using different adaptive laws are not very
obvious. Fig. 7 shows the tracking error along the reference
trajectory.

Since the convergence rate using the first adaptive law is
slower, the result using it has more error at the beginning.
Therefore, despite the insignificant difference, we can still
suggest that the tracking ability using the second adaptive
law are slightly better.

B. Neural Network

We choose python and ML tool box, keras as our simula-
tion platform to construct our model.

1) The slippage ratio remains the same: Fig.8 the result
shows that the tracking performance with the offline NN
slippage compensator is better than that without the compen-
sator. However, because the NN training data is not generated
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Fig. 8: Tracking result(slippage not changes)

from this desired trajectory, the offline tracking trajectory is
not as good as the online tracking trajectory.
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Fig. 9: Tracking result(slippage changes when t > 30sec)

2) The slippage ratio changes when t > 30sec: In this
case, the defect of the offline NN slippage compensator
reveals, which is that us cannot catch the desired trajectory.
By contrast, tracking with online NN compensator almost
overlaps with the desired trajectory.(Fig.9)

Fig.10 shows the comparison of slippage ratio estimation
and estimation error between online and offline NN com-
pensator. Online NN compensator has smaller slippage ratio
error and better slippage tracking performance.

3) offline v.s. online: We can regard the changing in the
slippage ratio as the different terrain or soil condition the
TMR robot encounters in the real world. A lot of factors



slippage offline estimation error

(a) slippage estimation offline (b) slippage error offline

left slippage online estimation 03 slippage online estimation error

(c) slippage estimation online (d) slippage error online

Fig. 10: NN offline/online slippage estimation result

that affect the slippage ratio we won’t know in the future.
Therefore we need online learning to update the slippage
compensator model in time.

C. NN v.s. Adaptive
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Fig. 11: Tracking result of four compensator methods

Fig.11 shows the tracking result of the four compensator
methods. All of the four methods effectively predict the
slippage ratio. To evaluate which method come to a best
tracking performance. We introduce RMS value of tracking
error as criterion
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Fig. 12 shows the error of x, y and # along the tracking
process and Table I shows the RMS value of four slippage
compensator methods.

Fig. 12: error data

er ey e e]
Adaptive 1 3.341 4.525 9.188 6.219
Adaptive 2 3.471 3315 10.180  6.500
NN online 5.824 2571 9.340  6.525
NN offline  11.558  4.105 7.895 8.435

TABLE I: RMS value of four slippage compensator

Only offline NN compensator has larger RMS, and the
other three compensators have outstanding performance.

V. CONCLUSIONS

In this paper, we describe how difficult to model the
slippage ratio and how slippage ratio have an impact on
tracking trajectory. To deal with the problem of slippage
ratio, we introduce two methods of adaptive designs and
online/offline neural network to estimate the slippage ratio.
Finally, we prove that we can predict the slippage ratio
correctly and enhance tracking performance by matlab and
python simulation. Next, we simulate these slippage-ratio-
predicted methods on various trajectories to validate its
robustness. Finally, we will implement it on a real TMR
robot.
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